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Abstract

As scientists incorporate more sophisticated models into their simulations, soft-
ware complexity, as well as the underlying computational cost of these models, are
growing rapidly. Performance evaluation and tuning of applications that are large-
scale both in terms of source code and runtime requirements can be challenging
and time-consuming for scientists. We have developed a software infrastructure for
performance monitoring, performance data management, and adaptive algorithm
development for parallel component PDE-based simulations. Newton-Krylov non-
linear and linear solver components are instrumented for performance monitoring
using the TAU performance tools. To reduce the performance monitoring and com-
ponent adaptation overhead, we employ two databases that serve significantly dif-
ferent purposes. The first one is created and destroyed during runtime, and stores
performance data for code segments of interest, as well as various application-specific
performance events in the currently running application instance. The second one
is persistent and contains performance data from various applications and different
instances of the same application. It can also contain performance information de-
rived through offline analysis of raw data. We describe a prototype implementation
of this infrastructure and show how adaptive linear solver algorithms are employed
in a driven cavity flow simulation code.
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1 Introduction

Our performance infrastructure is motivated by the needs of parallel simula-
tions based on the solution of partial differential equations (PDEs), such as
computational fluid dynamics, fusion, accelerator design, climate modeling,
combustion, and many others. PDE-based scientific software complexity has
been increasing as new models and solution methods emerge. Often a sin-
gle simulation code involves multiphysics, multimodel, multidisciplinary, and
multi-institutional software development. Typical numerical methods for such
problems incorporate the solution of large sparse linear systems of equations.
Linear system solution typically takes 70%-85% of the total simulation time
and is therefore a logical candidate for extensive performance analysis and
optimization. New, more robust or efficient algorithms are the traditional ap-
proach to achieving better performance. Another approach is to develop mul-
timethod linear solvers [1–5] that involve the application of several algorithms
in the course of solving the same problem. Several different types of multi-
method approaches exist; in this paper, we focus on two of them: composite
and adaptive methods. A composite linear solver comprises several underlying
(base) methods, which are applied in sequence to the same linear system un-
til convergence is achieved. Such solvers are normally constructed statically,
using past base method performance data and a simple performance model
combining robustness and execution time. An adaptive linear solver applies a
sequence of base solution methods to different linear systems arising at each
nonlinear iteration of the PDE solution. Adaptive heuristics usually select one
among several candidate base methods at runtime in order to optimize some
performance attribute of an application, for example, an approximation of the
nonlinear convergence rate or total simulation time. Detailed descriptions of
these multimethod approaches can be found in [1–3].

While performance analysis-based algorithm selection and adaptation has pro-
duced some promising results in terms of application performance, the devel-
opment of multimethod strategies is complicated and time-consuming due to
the lack of a software infrastructure for support of such nontraditional meth-
ods. This has motivated the design and implementation of the component
performance monitoring and analysis interfaces and components described in
this paper. Our design was aided and influenced by our ongoing research in
computational quality of service (CQoS) [6, 7], which refers to the automatic
selection and configuration of components to suit a particular computational
purpose.
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We now introduce some of the terminology used in this article. We collectively
refer to performance-relevant attributes of a unit of computation, such as a
component, as performance metadata or just metadata. These include algo-
rithm or application parameters, such as problem size and physical constants,
compiler optimization options, and execution information, such as hardware
and operating system information. Performance metrics, also referred to as
CQoS metrics, are also part of the metadata, for example, execution time and
convergence history of iterative methods. Ideally, for each application execu-
tion, the metadata should provide enough information to be able to repeat
the run; we collectively refer to these metadata as an application instance or
experiment. The remainder of this section briefly introduces the technologies
that provide the specifications and tools which have enabled the creation of
our performance monitoring and analysis infrastructure.

1.1 Component technology for scientific computing

The Common Component Architecture Forum [8–10] was launched in 1998 as
a grassroots initiative to bring the benefits of component-based software en-
gineering to high-performance scientific computing. In 2001, the U.S. Depart-
ment of Energy (DOE) established the Center for Component Technology for
Terascale Simulation Software (CCTTSS) [11], which supports component re-
search and software infrastructure development. As in other component-based
software engineering approaches, such as CCM [12], EJB [13], and COMM [14],
the goals are to help manage software complexity and to enable reuse of com-
ponents in multiple applications. Unlike these commodity component models,
the CCA specifically targets high-performance applications, particularly their
need for low-overhead component interactions, parallelism, and support for
language interoperability between components implemented in languages typ-
ically used in scientific software development, such as Fortran, C, and C++.
This approach ensures minimal overhead in most cases (approximately the
cost of a virtual function call) for component interactions and possible data
type conversions handled by the Babel language interoperability layer [15,16]
used in CCA [17].

Briefly, CCA components are units of encapsulation that can be composed
to form applications; ports are the entry points to a component and repre-
sent public interfaces through which components interact; provides ports are
interfaces that a component implements, and uses ports are interfaces that
a component uses. A runtime framework provides some standard services to
all CCA components, including instantiation of components, and uses and
provides port connections. Components can be instantiated/destroyed and
port connections made/broken at runtime, which allows dynamic adaptivity
of CCA component applications and enables the implementation of the adap-
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tive linear solver methods introduced above.

1.2 Performance tools

Tuning and Analysis Utilities (TAU) [19, 20]. TAU is a portable pro-
filing and tracing toolkit for performance analysis of parallel programs. In
addition to providing a portable instrumentation interface, TAU can be used
in conjunction with the Program Database Toolkit [21], to instrument code
automatically at the function level. A TAU-based abstract interface for scien-
tific components was also recently introduced in [22] and used in constructing
performance models in component applications [7,23], as well as in our imple-
mentation as described in Section 3.

Performance Data Management Framework (PerfDMF) [24]. PerfDMF
is a new, general-purpose environment for performance data management, in-
cluding importing and exporting data from parallel profiling tools, portable
large-scale profile data management, and abstract interfaces for database ac-
cess. In our work we are mainly using the profile database component, which
supports a number of database engines, including PostgreSQL, MySql, Oracle,
and DB2.

The rest of this paper is organized as follows. Section 2 describes our approach
to designing a component infrastructure to support performance monitoring,
analysis, and adaptation. Section 3 presents some implementation details of
this infrastructure. Section 4 illustrates the use of our infrastructure in a driven
cavity flow simulation, and Section 5 contains our conclusions, as well as brief
discussion of ongoing and future work.

2 Performance monitoring and analysis infrastructure

In high-performance scientific computing, execution time is one of the key
parameters when considering performance, but it is not the only one. Other
application attributes can affect the quality of a scientific simulation, such
as convergence rate, stability, parallel scalability, and accuracy of the final
result. These are not independent of each other, and it is difficult or im-
possible to optimize all simultaneously. For example, maximizing accuracy
will almost certainly result in longer execution time. We consider these and
other application-specific CQoS parameters when discussing the performance
of component applications in general. Our goal is to enable the implementation
of CQoS-enhanced applications by first providing the necessary performance
data gathering and manipulation infrastructure that can then be used by
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Fig. 1. Hierarchy of parameters for a given application. Some, such as problem size,
are fixed, while others, e.g., algorithmic parameters or compiler options, can be
fine-tuned for better performance.

algorithms and heuristics to automate component application assembly and
provide dynamic adaptation support based on CQoS metadata from analyti-
cal performance models or synthesized from past performance history of the
application.

For a particular application, such as the driven cavity flow example intro-
duced in Section 4, there are several parameters, e.g., grid size, lid velocity,
Grashof number, or initial CFL number, which can be varied to create prob-
lem instances of varying degrees of difficulty. Every combination of parame-
ters represents a certain experiment, or as referred previously, an instance of a
problem. As Figure 1 illustrates, we can loosely divide these parameters into
several categories: parameters that influence the definition of the problem, or
model parameters, such as lid velocity in the driven cavity problem; param-
eters that characterize the implementation approach, or algorithmic parame-
ters, such as error tolerance for a nonlinear solver; and architecture-specific
compiler and hardware parameters that can influence the execution time of
an application. Our initial focus is on model and algorithmic parameters, with
plans to incorporate architecture-specific parameters at a later time. One of
the main goals of our framework is to enable and support the development of
performance-improving component assembly and adaptation strategies based
on performance analysis results annotated with CQoS parameters.

Finding a set of algorithms that are best for solving a problem or a part
of a problem is a difficult task. For example, there are numerous choices for
iterative linear solvers for large sparse systems, and as properties of the linear
systems change, it would be desirable to use a solver that achieves the best
performance on the current system. Most iterative algorithms, however, do not
come with neat performance models that would allow us to get this information
a priori.

An alternative approach is to analyze past performance information and try
to identify those CQoS parameters that have the greatest impact on perfor-
mance. One of our ultimate objectives is to discover whether there are common
performance characteristics for given CQoS parameters across various exper-
iments. If there are such characteristics, we would like to discover them and
represent them in the performance database in the form of metadata. One can
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Fig. 2. Some of the components and port connections in a typical PDE application:
(a) in a traditional non-adaptive setting, and (b) augmented with performance mon-
itoring and adaptive linear solver components.

then develop adaptive strategies that take advantage of the derived metadata
in addition to current execution data to choose a best set of parameters and
the best algorithm for a given experiment.

The design of our infrastructure was guided by the following goals: (1) low
overhead during the application’s execution; since all the time spent in per-
formance monitoring and analysis/adaptation is overhead, it is essential that
the impact on overall performance be kept to a minimum; (2) minimal code
changes to existing application components in order to encourage use of this
performance infrastructure by as many CCA component developers as possi-
ble; and (3) ease of implementation of performance analysis algorithms and
new adaptive strategies, which would enable and encourage the development
and testing of new heuristics or algorithms for multimethod components.

Figure 2 (a) shows a typical set of components involved in nonlinear PDE
applications; no explicit performance monitoring or adaptive method support
is available. Figure 2 (b) shows the same application with the new performance
infrastructure components.

The adaptive heuristics component implements a simple AdaptiveAlgorithm
interface, whose single method, adapt, takes an argument containing application-
specific metadata needed for implementing a particular adaptive heuristic and
storing the results. Specific implementations of the AdaptiveContext interface
contain performance metadata used by adaptive heuristics, as well as refer-
ences to the objects that provide the performance metadata contained in the
context.

Within our framework we have to differentiate between tasks that have to
be completed at runtime, and tasks that are performed when the experiment
is finished. Consequently, we have two databases that serve significantly dif-
ferent purposes. The first one is created and destroyed during runtime, and
stores performance data for code segments of interest and application-specific
performance events for the running experiment. The second database is per-
sistent, and contains data about various applications and experiments within
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one application. The second database also contains metadata derived by per-
formance analysis of raw performance results. At the conclusion of an ex-
periment, the persistent database is updated with the information from the
runtime database.

2.1 Runtime support

Figure 3 illustrates the components involved in the dynamic performance mon-
itoring and analysis. The “Numerical Component” represents any of the com-
ponents involved in the application, for which monitoring and optionally adap-
tation can be done. Our initial focus is on adaptive linear solvers in the context
of nonlinear PDE solution; therefore, the “Numerical Component” represents
the nonlinear and linear solver components. The following components provide
performance monitoring and data management support at runtime.

• TAU Measurement Component. This component collects runtime data
from hardware counters, timing, and user-defined application-specific events.
This component was provided by the developers of TAU, and complete im-
plementation details can be found in [25].

• Checkpoint Component. This component checkpoints and stores the col-
lected data into a runtime database that can be queried efficiently during
the execution for the purpose of runtime performance monitoring and adap-
tation. The TAU profiling API can only give either callpath-based or cu-
mulative performance information about an instrumented object (from the
time execution started). Hence, we have introduced the Checkpoint com-
ponent to enable us to store and retrieve data for the instrumented object
during the application’s execution (for example, number of cache misses for
every three calls of a particular function). The period for checkpointing can
be variable; the component can also be used by any other component in the
application to collect and query context-dependent and high-level perfor-
mance information. For example, a linear solver component can query the
checkpointing component for performance metadata of the nonlinear solver
(the linear solver itself has no direct access to the nonlinear solver that in-
voked it). We can therefore always get the latest performance data for the
given instrumented object from the database constructed during runtime.

• Metadata Extractor. This component retrieves metadata from the data-
base at runtime. After running several experiments, analyzing the perfor-
mance data and finding a common performance behavior with some param-
eter values, we store data summarizing this behavior in the database. An
example of derived metadata is the rate of convergence of a nonlinear or a
linear solver. During runtime, these data are used in adapting our param-
eter and algorithm selection, and the Metadata Extractor component can
retrieve compact metadata from the database efficiently.
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• Monitor Component. This component monitors the application and the
algorithm and parameter selection based on runtime performance data and
stored metadata.

Checkpoint Component
TAUMetadata

Extractor

Runtime
Database

Monitor

Performance
Database

request
adaptation

response
adapttaion

Numerical
Component

extract

extract

extract query

checkpoint

start, stop, trigger

Fig. 3. Dynamic performance components.

2.2 Offline analysis support

The portions of the infrastructure that are not used at runtime are illustrated
in Figure 4 and include a performance data extractor for retrieving data from
the performance database, which is used by the offline analysis algorithm com-
ponents. At present, the extractor also produces output in Matlab-like format,
which is convenient for plotting some performance results; this output can be
enhanced to interface with tools that provide more advanced visualization ca-
pabilities, such as an extension of ParaProf (part of the TAU suite of tools).
Many analyses can be applied offline to extract performance characteristics
from the raw execution data or the results of previous analyses – in fact, facil-
itating the development of such analyses was one of our main motivations for
developing this performance infrastructure. Initially we focus on simple anal-
yses that allow us to replicate results in constructing composite linear solvers
from performance statistics of base linear solver experiments [1]. Longer-term,
we plan to use this infrastructure for rapid development of new performance
analyses and adaptive heuristics.

3 Implementation

Our initial implementation consisted only of C++ components and C libraries.
Since many scientific applications are written in Fortran, we next developed
language-independent interfaces and corresponding initial implementations us-
ing the Scientific Interface Definition Language (SIDL) and Babel [15]. Our
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Fig. 4. Offline analysis components.

current implementation is still in C++, but is accessible from other languages
through the Babel-generated stubs code, which automates the interoperability
of object-oriented codes written in C, C++, Fortran, Python, and Java.

Our persistent database is based on the PerfDMF specification, with small
extensions. Since we are collecting performance data for iterative algorithms,
where different iterations do not normally take the same amount of time,
we need to express and store performance information for single iterations or
ranges of iterations. While TAU allows callpath profiling of an application, this
approach is too general for our purposes and imposes too great an overhead.
Our performance metadata table has the following fields:

• Iteration range for which the metadata result applies (this is a two-element,
one-dimensional array),

• Average slope of change of metadata in this range, and
• Input parameter range for which the metadata result applies (this is a two-
dimensional array).

This information enables the user or analysis algorithm to investigate certain
behavior for a particular subset of experiments. It is up to the component that
performs the data analysis to ensure that, within this range of iterations and
parameters, the minimum and maximum slope do not vary much from the
average slope. Currently the runtime interface supports two different types of
queries of the performance database:

• Extracting metadata for a certain performance parameter. Metadata are
related to a common behavior of performance values recorded with TAU
over a wide range of experiments performed on an application. For example,
we may want to find out for which nonlinear iterations the slope of CFL
number is bigger than some predefined number. We provide a C++ interface
and corresponding library for easy access to this kind of information. This
library is a thin wrapper over the SQL API and therefore can be used for
arbitrary SQL queries and is not limited to metadata extraction.

• Finding “optimal” algorithm parameters. In some cases we wish to find a
value for a certain algorithmic parameter that yields the best performance
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//NOTE: Name of a particular function is recorded in the database

//as name+type.

string function_name("main() int (int, char **)");

string metric_name("PAPI_FP_INS");

string param_name(" initial_cfl");

bool inclusive = true;

ierr = det.DetermineParameterMetric(param_name,

metric_name, function_name,

inclusive, &result_size, &result,

minimum, &optimal_index,

dstart, dend, lstart, lend);

Fig. 5. Code segment for extracting optimal values for algorithm parameters from
the database.

over the experiments that have already been profiled. Algorithmic parame-
ters can be fine-tuned in order to achieve better performance. For example,
we may want to find out what fill level for incomplete factorization precon-
ditioning would yield the fastest overall convergence of a nonlinear solver.
The user is not limited to specifying only one performance metric – if more
than one is given, then the parameter value optimizes the weighted sum of
the performance metric values computed with user-specified weights. For
each of the options, the user can search for parameter values over all ex-
periments for a given application, or only for experiments that have certain
model parameters in a certain range (for example, in the driven cavity appli-
cation example in Section 4, one can specify that grid size should be larger
than 100 or lid velocity should be 130). The output is a matrix in which the
first column is the parameter value and the rest of the columns contain the
values of the performance metrics specified. Figure 5 illustrates an example
use of this query interface.

4 Application example

We illustrate the use of our performance infrastructure in a computational fluid
dynamics application that simulates flow in a driven cavity, which combines
lid-driven flow and buoyancy-driven flow in a two-dimensional rectangular
cavity. We use a velocity-vorticity formulation of the Navier-Stokes and energy
equations, which we discretize using a standard finite-difference scheme with a
five-point stencil for each component on a uniform Cartesian mesh; see [26] for
a detailed problem description. Commonly used pseudo-transient continuation
methods introduce a false time-stepping term into the model, and necessitate
the need to solve a nonlinear system of equations at each time step using
Newton’s method. The transition of the time step from small to large controls
the conditioning of the linearized Newton systems; thus, the resulting linear
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Fig. 6. Comparison of single-method linear solvers and an adaptive scheme. We plot
the nonlinear convergence rate (in terms of residual norm) versus both time step
(left-hand graph) and time (right-hand graph).

systems are initially well-conditioned and easy to solve, while later in the
simulation they become progressively harder to solve.

In this parallel application, metadata describing the performance of the nonlin-
ear solution, as well as each linear solution method can be used to determine
when to change or reconfigure linear solvers. More details about the adap-
tive methodology can be found in [2, 3]. Figure 6 shows some performance
results comparing the use of an adaptive heuristic with the traditional single
solution method approach. The automated adaptive strategy performs better
than most base methods, and almost as well as the best base method (whose
performance, of course, is not known a priori).

Another use of our performance infrastructure is selection of application pa-
rameters based on performance information with the goal of maximizing per-
formance. For example, in the application considered here, initial CFL value is
essential for determining the false time step for the pseudo-transient Newton
solver, which in turn affects the overall rate of convergence of the problem.
Using the query interface described in Section 3, we can query the database to
determine the best initial CFL value from the experimental data available. We
hope that this CFL value will perform better than a random CFL value or at
least as well as the CFL value adopted by other researchers when performing
the experiments; we plan to evaluate this in further experiments.

5 Conclusions and future work

We have designed a framework for performance monitoring, evaluation, and
adaptation of parallel scientific applications and implemented a prototype us-
ing CCA components, TAU, and the PerfDMF database format. This infras-
tructure enables the performance characterization of scientific component ap-
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plications and the rapid development of performance analyses and adaptive
algorithms. We illustrated our initial implementation with an application that
represents the problem domain we are targeting.

Our current and future work includes expanding our current implementation
with more components for offline analyses of performance information, as well
as developing new adaptive heuristics for dynamic method selection. In addi-
tion to runtime adaptation, our performance infrastructure can support initial
application assembly, and can potentially be integrated with existing CCA
component infrastructure that uses component performance models for auto-
mated application assembly [7, 23].

We have performed some initial tests with the driven cavity application and
will next consider other PDE-based simulations with similar structure, such as
compressible Euler flow. A large number of experiments will be performed to
populate the database with enough performance data for analyses algorithms.
One of the short-term goals is to use the new performance infrastructure in
the automatic definition of composite linear solvers based on single method
performance data (currently composite algorithms are assembled manually).
We will also extend our infrastructure with new types of performance meta-
data as we develop new analyses. One longer-term objective is to investigate
whether accurate performance models can be synthesized or refined through
statistical analysis of the parameterized performance information of applica-
tions, potentially with the help of models derived through source code analysis
of the numerical component implementations.
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